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The Workshop Structural Analysis of Aperiodic Crystals is intended to

give an overview of the state of the art of crystallographic analysis of incommen-

surately modulated crystals, incommensurate composite crystals, polytypes and

quasicrystals. Introductory lectures will present the basic phenomena related to

aperiodic order, including diffraction and morphology, and the fundamental prin-

ciples of the superspace descriptions of their crystal structures. The afternoon

session will be devoted to recent developments and applications of superspace

crystallography.

Organized on behalf of the Commission on Aperiodic Crystals of the IUCr by

Sander van Smaalen1 and Ray L. Withers2

1Laboratory of Crystallography, D-95440 Bayreuth, Germany,

E-mail: smash@uni-bayreuth.de.
2Research School of Chemistry, Australian National University, Canberra, A.C.T,

0200, Australia, E-mail: withers@rsc.anu.edu.au.
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Workshop Structural Analysis of Aperiodic Crystals

on 23 August 2005 at the XX Congress of the IUCr in Florence.

Organized by Sander van Smaalen and Ray L. Withers.

Program

8.30 – 9.30 Registration

9.30 – 9.35 S. van Smaalen Opening remarks

9.35 – 10.30 W. Steurer Quasicrystals

10.30 – 11.00 Coffee break

11.00 – 11.45 G. Chapuis Superspace description of modulated

structures

11.45 – 12.30 A. Schönleber Introduction to superspace symmetry

12.30 – 14.00 Lunch

14.00 – 14.30 S. Lidin Incommensurate structural refinements

from powder data—The symmetry point

of view

14.30 – 15.00 B. Toudic Superspace symmetry breakings in aperi-

odic molecular nanoporous crystals

15.00 – 15.30 O. Perez Modulations as ”a vector” for crystal order

and non stoichiometry in layered oxides

15.30 – 16.00 R. Lifshitz Symmetry of aperiodic crystals

16.00 – 16.15 R. Withers Closing remarks

18.00 Start of the XX Congress of the IUCr
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Aperiodic crystals at the XX Congress of the IUCr.

23 AUG Tuesday 8.30 – 16.10 Workshop No.4 – Aperiodic Crystals

25 AUG Thursday 8.30 – 9.30 Keynote lecture KN7 by V. Petricek:

Structure Analysis of Modulated Crystals:

Trends and Tendencies (Chair: R. With-

ers).

10.00 – 12.35 Microsymposium MS19, News from in-

commensurate structures. Speakers: D.

Fredrickson, J.M. Perez-Mato, R. Withers,

Y. Michiue and G. Borgstahl. (Chairs: S.

van Smaalen and S. Lidin.)

14.45 – 17.20 Microsymposium MS26, Recent advances

in quasicrystal research. Speakers: R. Mc-

Grath, Z. Papadopolos, M. de Boissieu, G.

Krauss and Y. Matsushita. (Chairs: K.

Saitoh and R. Lifshitz.)

17.30 – 18.30 Keynote lecture KN10 by A. Yamamoto:

Quasicrystal Structure Analysis. The

State of the Art (Chair: M. De Boissieu).

29 AUG Monday 14.45 – 17.20 Microsymposium MS83, Computational

solutions for aperiodic crystals. Speakers:

M. Dusek, S. van Smaalen, L. Palatinus, Z.

Izaola and I. Orlov. (Chairs: Ch. Svens-

son and V. Favre-Nicolin.)
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Aperiodic 2006 (Aperiodic'06) 

18-22, September 2006 

Zao, Miyagi, Japan 

 
The "Aperiodic'06" will be held at the Miyagi Zao Royal Hotel in Zao, Miyagi, Japan from 18 to 22, 

September, 2006. Miyagi Zao Royal Hotel 

 
 
Topics 
Mathematics of aperiodic crystals, Theoretical studies on aperiodic crystals, Crystallography, Structures, 

Defects, diffuse scattering, Morphology and Growth, Phase transitions,, Phonons and Phasons, Properties, 

Interfaces and Surfaces,, Applications. 

 
Location 
Zao is in Miyagi prefecture and located near Sendai, the largest city in the northern part of the main island 

of Japan. Sendai is accessible by airplane and super-express train (shinkansen).  It takes about one hour 

by bus from Sendai. The shuttle bus will be available.  

 
Call for Papers 
Contributions on the above topics are invited for oral and poster presentations at the conference. The 

online registration and submission of abstracts will become available by the end of 2005.  

 
Conference Publications 
An Abstract Book will be provided for delegates at the conference. Selected papers will be published in a 

Special Issue of Philosophical Magazine. 

 
Conference Chairpersons: A. Yamamoto and A. P. Tsai 

Conference Secretary: S. Fujimoto 

Organizing Committee: A. Yamamoto, A. P. Tsai, K. Saitoh, 

Y. Gotoh, Y. Miyazaki, Y. Michiue  

Local Organizing Committee: S. Kameoka, K. Tsuda, S. 

Ohhashi  

Program Committee: T. Ishimasa, T. J. Sato, H. Takakura, M. 

Onoda, M. Isobe, J. Morita  

International Advisory Board: S. van Smaalen (Germany), G. 

Chapuis(Switzerland), R. L. Withers (Australia), 

J. M. Perez-Mato (Spain), D. Pandey (India), M. 

Widom (USA), M. de Boissieu (France), W. 

Steurer (Switzerland), K. Niizeki (Japan), R. 

McGrath (UK), S. Lidin (Sweden) 

 

 

For further information, please visit the following web site 

http://aperiodic01.tagen.tohoku.ac.jp/index.html 
 

Secretariat of Aperiodic 2006 

Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University 

Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan 

Fax: +81-(0)22-217-5723 

 

Japan Science and Technology Agency (JST) 

Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University 

National Institute of Materials Science (NIMS) 



5th Workshop on Structural Analysis of Aperiodic Crystals  
 
March 2007 at the University of Bayreuth, Germany 
 

Mission Statement  
The 5th Workshop on Structural Analysis of Aperiodic Crystals continues a series of 
workshops on the structure determination of incommensurately modulated crystals and 
composite crystals at the University of Bayreuth. Purpose is to present an overview of 
the methods of structure determination and structural analysis of incommensurately 
modulated structures and composite crystals. Lectures will cover the basic principles of 
the superspace description of modulated structures as well as advanced topics and recent 
developments. In addition to the series of lectures the participants will have the 
opportunity to practice structure refinements using the computer program JANA2000 
(written by V. Petricek, M. Dusek and L. Palatinus, Prague). A step-by-step tutorial 
with several examples will be provided, but your own data sets are welcome, too.  
 
 
Confirmed  
speakers: V. Petricek (Prague), A. Schönleber and S. van Smaalen (Bayreuth).  
Dates:  Three days in March 2007.  
Venue: Campus of the University of Bayreuth, Bayreuth, Germany.  
Support:  Limited funds are available for the support of young scientists. 
Scientific contributions:  Participants are cordially invited to submit an abstract (one 
page A4 paper, 12 point Times font) for a presentation of their scientific results.  
 
Organised on behalf of the Commission on Aperiodic Crystals of the German 
Crystallographic Association (DGK) by Prof. Sander van Smaalen, Laboratory of 
Crystallography, University of Bayreuth, D-95440 Bayreuth, Germany.  
Contact Email: smash@uni-bayreuth.de  
Homepage: http://www.uni-bayreuth.de/departments/crystal/inc-workshop2007/index.html  

Disclaimer:  There is a maximum number of participants. The workshop will take place 
only, if a minimum of 8 participants is reached. 

6 



Workshop Structural Analysis of Aperiodic Crystals

on 23 August 2005 at the XX Congress of the IUCr in Florence.

Organized by Sander van Smaalen and Ray L. Withers.

Abstracts
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Crystallography of quasicrystals  
Walter Steurer  

Laboratory of Crystallography, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, 
Switzerland. 
E-mail: steurer@mat.ethz.ch   
 
The structure analysis of quasicrystals is still a highly non-trivial task [1]. In 
conventional structure analysis the translational periodicity of the structure is taken for 
granted. Therefore, only the structure of a single unit cell has to be determined. In the 
case of quasicrystals, both the local structure of the basic structural units ('clusters') as 
well as their kind of long-range ordering have to be unravelled. Rational approximants, 
i.e. periodic structures built from the same clusters as quasicrystals, provide easy access 
to the local structure of quasicrystals. However, finding the way the clusters are 
arranged on the long scale is still a major problem. While three-dimensional (3D) 
periodic structures can be described based on just 14 Bravais lattices, the number of 
'quasilattices' (tilings) of 3D quasiperiodic structures is infinite. 
In the framework of the nD approach, each quasilattice results from the intersection of a 
nD periodic hyper-crystal structure by the 3D physical space (Fig. 1). The kind of 
quasiperiodic long-range order depends on nD space-group symmetry and shape of the 
(n-3)D 'atomic surfaces' ('occupation domains'). The nD approach allows to use many of 
the tools of standard structure analysis, such as the Patterson function, in a modified 
manner. 
In the talk, the crystallographic description of decagonal and icosahedral quasicrystals 
[2] will be introduced and illustrated with several examples.  
 

 
 
Figure 1. Characteristic (1001)V section of the Penrose tiling together with the parallel- and perpendicular-
space projections of one 4D unit cell onto (1100)V  and  (0011)V, respectively. 
 
[1] W. Steurer, J. Non-Cryst. Solids 334 & 335, 137-142 (2004).  
[2] W. Steurer and T. Haibach, International Tables for Crystallography. Vol. B, Ed. U. 
 Shmueli, Kluwer Academic Publishers, Dordrecht, 486-518 (2001). 
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Superspace description of modulated structures 
Gervais Chapuis

Laboratoire de Cristallographie, Ecole Polytechnique Fédérale de Lausanne, BSP 
Dorigny, 1015 Lausanne, Switzerland.  
E-mail: gervais.chapuis@epfl.ch   
 

Historically, the concept of modulated structures is closely associated with the 
structure of γ-Na2CO3 which in the seventies resisted any attempt for a precise structural 
analysis. The appearance of additional reflections surrounding the main reflections was 
noted on single crystal diffractograms. Their positions were however not compatible 
with any reciprocal lattice periodicity and were therefore called satellite reflections 
owing to their properties of being linked to main reflections rather than to a lattice 
encompassing the full spectrum of reflections. It was the merit of P.M. de Wolff [1] to 
interpret this peculiar diffraction pattern as a three dimensional projection of a higher 
dimensional reciprocal lattice, an idea which led directly to the generalisation of the 
concept of a crystal. This generalisation consisted in using more then three integers to 
fully characterise each individual diffraction peak. The corollary was then to develop a 
theory of periodic crystals in spaces of higher dimension, i.e. the superspace in order to 
deal with the new experimental observations. The framework was thus established in 
order to describe the structures of incommensurately modulated crystals. Later, a new 
class of materials called composite crystals and still later, the discovery of quasicrystals 
only reinforced the validity of the superspace concept to describe any material requiring 
more than three integers to index their diffraction pattern. Currently, the concept of 
aperiodic crystals is systematically used to reunite these families under a common 
denominator.    

What is the essence of superspace to describe crystalline structures? Any crystal 
structure requiring more than three integers to index its diffraction pattern can be 
described as a periodic object in a superspace with a dimension equal to the number of 
required integers. The structure observed in our real word is a three dimensional cut of 
this superspace. In general this cut is irrational and consequently the crystal is aperiodic. 
γ-Na2CO3 is an example of an aperiodic crystal. Rational cuts are also possible. In this 
case, the structure is periodic and is usually called a superstructure.  

In dealing with aperiodic structures, the challenge for the crystallographer is to 
find an adequate description of the shape function describing the position of atoms in 
higher dimensions. Many efforts have been invested in the past in order to find the most 
appropriate functions for the description of aperiodic crystals. Presently, good software 
tools are available for the refinement of aperiodic structures and improvements are 
constantly brought up. 

In the last few years however, many interesting properties of the superspace 
concept have been discovered which are directly applicable to conventional crystals. 
Currently, this concept is often adopted for the description of pressure or temperature 
dependent series of phases. The same concept appears also to be very useful for the 
description of modular structures, i.e. families of structures based on a small number of 
building blocks like ferrites or Aurivillius phases.  This field is apparently in  full 
development and many new applications can be expected in the nearest future.  
 
[1] P.M. de Wolff, Acta Cryst. A 30, 777-785 (1974).  
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Introduction to superspace symmetry 

Andreas Schönleber

Laboratory of Crystallography, University of Bayreuth, Universitätsstraße 30, D-95440 
Bayreuth, Germany.  
E-mail: andreas.schoenleber@uni-bayreuth.de 
 
The concept of symmetry is fundamental to crystallography, such that the description of 
any structure is essentially based on its space group symmetry. The identification of its 
space group is a prerequisite for the solution of a crystal structure. 
Aperiodic crystals (incommensurately modulated structures, composite structures, 
quasicrystals) do not possess three-dimensional translational symmetry, but they have 
long-range order. The latter corresponds to sharp Bragg reflections in the diffraction 
patterns. This long range order can be expressed in terms of symmetry by applying the 
superspace formalism via superspace groups. The crystal structure will be embedded 
into superspace to recover translational symmetry (Figure 1). The superspace groups are 
(3+d)-dimensional space groups with additional properties (in comparison to general 
higher-dimensional space groups) because of the privileged role of the three-
dimensional physical subspace VE with respect to the additional d-dimensional subspace 
VI. For the particular case of one-dimensionally modulated structures, i.e. structures for 
which all the diffraction vectors can be described by four integers hklm, the full set of 
(3+1)-dimensional superspace groups has been tabulated [1]. 
Similar to the three-dimensional space groups, the superspace group can be selected on 
the basis of selection rules characterized by systematic absences in the diffracted 
intensities (main as well as satellite reflections, see Figure 2). 
 

Figure 1: Schematic presentation of the embedding 
of a crystal structure into superspace. 

Figure 2: Schematic view of systematic absences 
(x) of main (●) and satellite (●) reflections. 

 
The general principles of superspace symmetry will be discussed. Some examples will 
be presented, that illustrate the elegance of the superspace approach and the use of 
superspace groups in structural analysis of modulated crystals. 
 
[1] T. Janssen, A. Janner, A. Looijenga-Vos, P. M. de Wolff, in A. J. C. Wilson, 
E. Prince (eds.) International Tables for Crystallography - Volume C, Kluwer 
Academic Publishers, Dordrecht, pp. 899–937 (1999). 

11 



Incommensurate structural refinements from powder data – The symmetry point 
of view 

B. Malaman,1 G. Venturini,1 J. Christensen,2 and S. Lidin2

1Laboratoire de Chemie du Solide Minéral, Université Henri Poincaré-Nancy I, 54506 
Vandoeuvre les Nancy, France.  
2Department of Inorganic Chem., Stockholm University, 106 91 Stockholm, Sweden.  
 
Normally the symmetry of an incommensurate phase is determined from the symmetry 
and extinction conditions of the diffraction pattern, but in some cases it is more useful to 
consider the symmetries of known, related, commensurate phases. In this talk we will 
discuss three families of incommensurate structures; the system ScFe6Ge6-xGax [1], 
systems based on the ThSi2 type structure [2,3] and systems based on defect AlB2 type 
structures [4,5]. The first family of compounds constitutes a more or less continuous 
series of compounds ranging from the pure germanium compound that crystallizes in 
space group Cmmm in the HfFe6Ge6 type structure to the pure gallium compound 
crystallizing in the space group Immm. The intermediate compositions form a range of 
intergrowths between the two parent structures that is modelled very simply by an 
incommensurate approach in the superspace group Xmmm(0b0) and a sub-group of this, 
X2/m(ab0). 
The second family of compounds consists of a large family of sub-stoichiometric early 
rare-earth digermanides. The basic structure crystallizes in the space group Fddd and the 
incommensurate family belongs to the superspace group Fddd(0b0)s00. 
The third and final family of compounds are sub-stoichiometric late rare-earth 
digermanides adopting a defect AlB2 structure (Fig. 1). The parent structure is 
hexagonal with the space group P6/mmm, while the modulated structures crystallize in 
the superspace group X2/m(a0g)0s. 
For all families single cases were studied, and the structures were refined from powder 
samples. Once the approximate cell parameters where determined, refinement was 
simple and convergence rapid. 

 
Fig. 1.   Ge-substructure of a defect AlB2 type compound. 

[1] G. Venturini, J. Alloys and Compounds 322, 190-197 (2001).  
[2] G. Venturini, I. Ijjaali and B. Malaman, J. Alloys and Compounds 289, 168-177 (1999).  
[3] G. Venturini, I. Ijjaali and B. Malaman, J. Alloys and Compounds 285, 194-203 (1999). 
[4] G. Venturini, A. Verniere and B. Malaman, J. Alloys and Compounds 291, 201-207 (1999). 
[5] G. Venturini, I. Ijjaali and B. Malaman, J. Alloys and Compounds 284, 262-269 (1999). 
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Superspace symmetry breakings in aperiodic molecular nanoporous crystals 

B. Toudic1, P. Rabiller1, C. Odin1, C. Ecolivet1, P. Garcia1, F. Le Gac1, L. Bourgeois1,2,  
P. Bourges2 and T. Brewczewski3 

1 G.M.C.M, UMR CNRS 6626, Université de Rennes I, F-35042 Rennes. 
2 L.L.B., CEA-CNRS, CE-Saclay, F-91191 Gif/Yvette. 
3 Facultad de Ciencas, Apdo 644, Bilbao, Spain. 

E-mail: bertrand.toudic@univ-rennes1.fr 
 
Supramolecular chemistry has opened a broad field of investigation to solid state 
physicists by its ability to produce new self-assembled materials. A prototype tubular 
example of self-organization is given by inclusion crystals, such as urea nanoporous 
compounds [1,2]. This simple paradigm crystal offers a unique opportunity to address at 
a fundamental level the question of the nature of interactions in self-organized 
architectures [3,4].  

Many intergrowth materials are aperiodic by construction and their structures are 
then described in the framework of superspace crystallography [5,6]. It is well-known 
that aperiodicity allows original features considering the specific collective dynamics. 
Another case, where the additional degrees of freedom given by superspace 
crystallography may play a fundamental role, concerns structural phase transitions. 
Here, we will present new evidence of pure symmetry breaking in a superspace, 
together with all other types of transitions allowed with such degrees of freedom. 
Unexpected information concerning the actual interactions in these organic host-guest 
compounds comes out of these results. 
 
[1] M.D. Hollingsworth and K.D.M. Harris, in Comprehensive Supramolecular 
Chemistry Vol. 6, edited by D.D. MacNicol, F. Toda and R. Bishop (Pergamon Press, 
New York, 1996) pp. 177-267. 
[2] R. Lefort, J. Etrillard, B. Toudic, F. Guillaume,T. Breczewski and P. Bourges, Phys. 
Rev. Lett. 77,  4027-4031 (1996). 
[3] L. Bourgeois, C. Ecolivet, B. Toudic, P. Bourges, T. Breczewski, Phys. Rev. Lett. 
91, 25504 (2003).  
[4] L. Bourgeois, B. Toudic, C. Ecolivet, J.C. Ameline, P. Bourges, T. Breczewski, F. 
Guillaume, Phys. Rev. Lett. 93, 26101 (2004). 
[5] T. Janssen, A. Janner, A. Looijenga-Vos, and P.M. de Wolff, in International Tables 
for Crystallography Vol. C, edited by A.J.C. Wilson (Kluwer, Dordrecht, 1995) pp. 
797-844. 
[6] S. van Smaalen and K.D.M. Harris, Proc. Roy. Soc. London A 452, 677-700 (1996). 
 
 

13 



Modulations as "a vector" for crystal order and non stoichiometry in layered 
oxides 

O. Pérez, B. Mellenne, C. Lepoittevin, D. Grebille, D. Pelloquin, R. Retoux, S. Malo 
and M. Hervieu,  

CRISMAT/Ensicaen, 6 Bd du Mal Juin, 14050 Caen France. 
E-mail: olivier.perez@ensicaen.fr  
 
Sr2Ga2/3Co7/3O6+δ and Sr2Fe3O6+δ [1] belong to the Ruddelsen-Popper family and are 
related to the high-Tc superconductor oxide Bi2Sr2CuO6+δ [2]. These layered phases 
exhibit commensurate and incommensurate modulations. The general expression for the 
modulation wave vector is q = αa*+γc*; α varies with the oxygen rate i.e. with δ. The 
symmetry of Sr2Ga2/3Co7/3O6+δ and Sr2Fe3O6+δ  can be described using the superspace 
formalism [3] by the same superspace group Amaa(α01). The cases corresponding to 
α = 1/3, 2/7 and 0.46 were investigated but other α values were also observed. Similar 
models were obtained; they reveal the existence of a strong and linear displacive 
modulation within the [MO] layers (M = Fe or Co). Extra oxygen atoms were located 
for a limited x4 interval in these layers; they were modeled using crenel functions. For 
the commensurate cases both the superspace approach, including the analysis of 3D 
sections, and the classical superstructure treatment were performed; the complex model 
developed for the [MO] layers combining sawtooth and crenel functions is then 
validated. The incommensurate case provided accurate (3+1)D Fourier maps and 
highlighted the existence of residual static disorder in the [MO] layers. This 
phenomenon is correlated to lines of diffuse scattering in reciprocal space observed for 
the different samples; it can be attributed to a second modulation wave occurring within 
the [MO] layers but with a lack of coherence along the stacking direction. Finally, the 
role of modulations as a driving force to relax strains in layered oxides and to allow 
non-stoichiometry is outlined.  
 

 
Figure 1: Projection of the structure along b.  

M-O bonding scheme and polyhedra environment are represented.  
 
[1] A. Yoshiasa, K. Ueno, F. Kanamaru and H. Horiuchi, Mat. Res. Bull., Vol. 21, 175-
181 (1986). 
[2] H. Leligny, S. Durčok, P. Labbé, M. Ledésert,. and B. Raveau. Acta Crystallogr. 
B48 407 (1992). 
[3] W. Steurer and T. Haibach, International Tables for crystallography, vol. B (2nd 
edition), 486-518.  
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Symmetry of aperiodic crystals   
Ron Lifshitz  

School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact 
Sciences, Tel Aviv University, Tel Aviv 69978, Israel. 
E-mail: ronlif@tau.ac.il 
 
Dan Shechtman's discovery of quasicrystals, more than 2 decades ago, has 
fundamentally changed the way we think about such elementary concepts as 
crystallinity, long-range order, and symmetry [1-3]. Unfortunately, complicated 
mathematical descriptions in abstract high-dimensional spaces have stood in the way of 
disseminating our current understandings of these concepts to a broad community of 
scientists. How many physicists and chemists still teach their students that a crystal is a 
periodic repetition of a unit cell, even though the International Union of Crystallography 
has long ago abolished this definition of a ‘crystal’ [4]? 
I shall review the notion of symmetry in crystals and explain—without the use of high 
dimensional tricks—exactly what we mean today when we say that a certain rotation is 
a symmetry element of a crystal. This redefinition of crystalline symmetry applies to all 
crystals known to date—from ordinary periodic crystals to incommensurately-
modulated crystals, incommensurate composite crystals, and quasicrystals—and is used 
to generalize space-group theory to all of them [3,5]. When expressed in Fourier space 
this redefined notion of symmetry easily determines the pattern of symmetry-imposed 
extinction conditions in the diffraction pattern of a crystal. 
If time permits I shall generalize the ordinary notion of crystalline symmetry to the 
notions of color [6] and magnetic [7-9] symmetry in crystals. 
  
 
[1]  R. Lifshitz: The rebirth of crystallography, Z. Kristallogr. 217, 342-343 (2002).   
[2]  R. Lifshitz: Quasicrystals: A matter of definition, Foundations of Physics 33, 1703-

1711 (2003). 
[3]  R. Lifshitz: The symmetry of quasiperiodic crystals, Physica A 232, 633-647 

(1996). 
[4]  International Union of Crystallography—Commission on Aperiodic Crystals, Acta 

Crystallogr. A 48, 922 (1992).  
[5]  N. D. Mermin: The space groups of icosahedral quasicrystals and cubic, 

orthorhombic, monoclinic, and triclinic crystals, Rev. Mod. Phys. 64, 3-49, (1992). 
[6]  R. Lifshitz: Theory of color symmetry for periodic and quasiperiodic crystals, Rev. 

Mod. Phys. 69, 1181-1218 (1997). 
[7]  R. Lifshitz: Symmetry of magnetically ordered quasicrystals, Phys. Rev. Lett. 80, 

2717-2720 (1998). 
[8] R. Lifshitz and S. Even-Dar Mandel: Magnetically ordered quasicrystals: 

Enumeration of spin groups and calculation of magnetic selection rules, Acta 
Crystallogr. A 60, 167-178 (2004).  

[9]  R. Lifshitz: Magnetic point groups and space groups, in Encyclopedia of 
Condensed Matter Physics (Elsevier, 2005). In press.  
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